Problema + Difícil 3.3
Fonte: Problema 25-28 - página 135 - HALLIDAY, RESNICK,
WALKER, Jearl - Livro: Fundamentos de Física - Vol 3 - Ed. LTC - 8ª edição - 2009.
O capacitor C3 do circuito mostrado na figura abaixo é um capacitor que podemos variar sua capacitância.
O gráfico mostrado abaixo, representa o potencial elétrico V1 entre as placas do capacitor C1
em função de C3. Para diferentes valores de C3 temos diferentes valores para V1.
Sabemos que o potencial elétrico V1 tende assintoticamente para 10 volts quando C3 → ∞.
Determine:
a) O potencial elétrico V da fonte.
b) Os valores de C1 e C2.
Solução do Problema + Difícil 3.3
Item a
Para a solução deste problema é importantíssimo que tenhamos em mente a equação que relaciona carga, capacitância e tensão em
um capacitor. Abaixo, apresentamos esta equação.
Pelo enunciado do problema, sabe-se que quando C3 → ∞ , a tensão sobre o capacitor C1 tende para o valor de 10 volts. Se C3 → ∞ , pode-se dizer que a associação paralela de C2 e C3 é igual a C3. Então a capacitância equivalente de todo o circuito será igual ao valor de C1, pois os capacitores estão em série. E como a equação mostrada acima deve ser satisfeita, obviamente se pode afirmar que a tensão V23 cai assintoticamente para zero. Logo, toda a tensão da fonte de tensão estará aplicada sobre o capacitor C1. Portanto, conclui-se que:
V = V1 = 10 volts
Item b
Para responder este ítem, deve-se levar em consideração duas particularidades:
1) Capacitores em série possuem cargas iguais, ou seja, q23 = q1.
2) Pelo gráfico fornecido no problema, percebe-se que quando C3 = 6 µF a tensão sobre o capacitor C1 é de V1 = 5 volts. Logo, é óbvio que V23 = 5 volts. Agora, note que se as cargas são iguais nos capacitores e a tensão sobre eles também são iguais, conclui-se que:
C1 = C2 + 6
Em outras palavras: a capacitância da associação paralela de C2 e C3 deve ser igual a capacitância de C1.
Outra informação que se pode retirar do gráfico: quando C3 = 0 temos V1 = 2 volts. Ora, se V1 = 2 volts então V23 = 8 volts, pois a soma dessas tensões deve ser igual a tensão da fonte, (V = 10 volts).
E, mais uma vez, como as cargas devem ser iguais, ou seja, q1 = q2, conclui-se que:
q1 = q2 ⇒ 2 C1 = 8 C2
Fazendo a simplificação:
C1 = 4 C2
Logo, obteve-se um sistema de duas equações a duas incógnitas de facílima solução.
Portanto, os valores de C1 e C2 são: