Problema 103-7
Fonte:
Exemplo 9-1 - página 405 - FITZGERALD, A. E. - Livro:
Eletric Machinery - 5ª Edição - Ed. McGraw-Hill - 1990.
Um máquina CC na configuração excitação independente possui uma potência de 125 kW em uma tensão de 125 V e opera a uma velocidade constante de 3.000 rpm com uma corrente de campo constante, tal que a tensão de armadura em circuito aberto é igual a 125 V. A resistência de armadura é igual a 0,02 Ω.
Encontre a corrente de armadura, a potência absorvida pela máquina da rede de alimentação, a potência mecânica
e o torque, quando:
a) a tensão terminal, VT = 128 V.
b) a tensão terminal, VT = 124 V.
Solution of the Problem 103-7
The independent excitation configuration of a DC motor is characterized by the circuit shown in Figure 103-07.1.
If VT = 128 V and EA = 125 V, then using the equation shown in the
figure above we can calculate the armature current after algebraic work on the equation, that is:
The power that the machine absorbs from the supply network is given by:
To calculate the mechanical power on the motor shaft we will use the eq. 103-17 shown below.
So, replacing the variables by their respective values, we get:
And to find the value of the torque, we will use the eq. 103-16, that is:
Where do we use the fact that ω = π n / 30. As the terminal voltage is greater than the voltage generated by the armature, this machine is working as a motor.
For the case VT = 124 V and EA = 125 V, using the equation from item a), we have the armature current. In this case, it is clear that the machine is operating as a generator.
The power that the machine supplies to the network is given by:
And the power on the machine shaft is:
And the torque that the generator must receive is: